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Abstract. A calculation of the optical conductivity and related optical properties of liquid silicon
is presented. Starting from the results of a single superchain/effective medium approximation for
the electronic properties, the frequency dependent conductivity is evaluated in terms of the Kubo–
Greenwood formula. For a fast computation of the three and four centre terms therein the effective
handling of the angular dependences of the Green’s functions known from the sp3-fluid model is
generalized to the current matrix elements. A good agreement of our results with experimental
data for liquid silicon is found. At higher frequencies (>5 eV) and in the fitted Drude parameters,
however, there are discrepancies due to the limitations of the sp3-model.

1. Introduction

Less theoretical work is done on the optical properties of molten systems like liquid silicon [1,2]
than on the mostly computed electronic density of states [2–9], although the optical properties
are of more practical interest and more tractable from the experimental point of view [10–19]
than the electronic ones [20–22]. The knowledge, especially of the change in optical constants
during the melting phase transition, can be advantageous in many technological applications,
e.g., for controlling the growth of single crystals from the melt or if very short laser pulses are
used for melting. In this case the optical observation method will be the only one which is
able to resolve changes on such short time scales.

The aim of this paper is to extend the powerful integral equation methods and its advantages
(no statistical errors, less numerical effort than in molecular dynamics) to the calculation
of optical properties. Starting from the integral equation approach given by the single
superchain/effective medium approximation (SSCA/EMA) for the electronic density of states
and the continuum (i.e. ensemble averaged) Green functions of the sp3 model of liquid silicon,
the optical properties are determined via the Kubo–Greenwood formula. In its formulation
in terms of matrix elements of the Green function in general not only the diagonal parts
contribute to the conductivity and therefore one has to evaluate multiple integrals connecting
(non-diagonal) Green functions and optical matrix elements. The deduction of the equation
for the optical conductivity consistent with the SSCA/EMA is the topic of section 2.

Even without vertex corrections the dependence on the angular variables describing the
orientations of the basis orbitals with respect to the distance vector of the two atoms involved
has to be extended to the direction of the electric field vector of the incoming light. The
handling of these angular dependences will be treated in section 3.

† Present address: Technische Universität München, Fachgebiet für Theoretische Chemie, Lichtenbergstraße 4, 85747
Garching, Germany.
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The results of this continuum Green function method for the optical properties of liquid
silicon as a sp3-fluid are presented in section 4. They agree well with various experimental
data from ellipsometry or angle-dependent reflectivity measurements. Especially in the low-
frequency limit the magnitude of the conductivity is more consistent with experimental data
than previous molecular dynamics results which deviate by a factor of 1.5 [2] or 0.3 [1]. In the
high-frequency region, however, deviations occur because of the limited validity of the sp3-
model used. This also has consequences for the real part of the dielectric function because an
extrapolation is needed to use the Kramers–Kronig transformation. Better results are expected
to be determined from an spd-basis, as discussed in the end of section 4.

2. Optical conductivity in terms of continuum Green functions

Integral equation methods like the SSCA/EMA immediately yield diagonal and non-diagonal
continuum (i.e. ensemble averaged) Green functions [23,24]. In general, with the knowledge of
Green function matrix elements (for a given configuration) and some optical matrix elements
(e.g. matrix elements of the momentum or of the current operator) one can use the Kubo–
Greenwood formula to determine the optical conductivity. After some manipulations (see
[25, 26]) it becomes

σ(ω) = πh̄

�

∑
µν

J zµνJ
z
νµ

exp(−βh̄ω)− 1

h̄ω

×
∫

dEfT (E) (1 − fT (E + h̄ω)) δ(E − εµ)δ(E − εν + h̄ω) (1)

where fT is the Fermi distribution function at temperature T , β = 1/kT and� the volume of
the system. The indicesµ, ν in (1) denote the eigenfunctions to the eigenvalues ε of the system
and J zµν is the corresponding matrix element of the operator of the current in an arbitrary but
fixed direction z. Of course, for an isotropic liquid the conductivity can be treated as a scalar.
The index z is only for reminding that both current matrix elements belong to the same direction.
Replacing the δ-functions in (1) in terms of Green functions (δ(E−εµ) = ImGµµ(E−i0)/(nπ)
where n is the total number of states in the system) one gets an expression that includes the
trace of the following operator:

(J ImG(E + h̄ω)J ImG(E)) .

Within a given tight binding basis (consisting of elements labeled i, j etc) one can express the
Green operator by G = ∑

i,j |i〉Ǧij 〈j |, and therefore the conductivity is given by

σ(ω) = h̄ρ

π

exp(−βh̄ω)− 1

h̄ω

∫
dEfT (E) (1 − fT (E + h̄ω))

×
[

1

N

∑
ijkl

Jij ImǦjk(E + h̄ω)JklImǦli(E)

]
(2)

whereρ is the number density of atoms andN is their total number. This formula is independent
of whether the elements of the basis are orthogonal to each other or not. Until now a concrete
configuration of atoms was considered, but what we are interested in is the ensemble average.
Except for a phenomenological correction, no vertex corrections are taken into account for
further evaluation, i.e., for the average over the product of Green functions the approximation

〈ImǦjk(E + h̄ω)ImǦli(E)〉 = 〈ImǦjk(E + h̄ω)〉〈ImǦli(E)〉
is used. This is a good approximation in the case of metals [23, 25, 27]. A method of how to
consider a full vertex correction may be derived in a similar way as in [28–30], but this would
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require another self-consistent calculation at every pair of energies, so the advantage of the
integral equation methods to need less numerical effort would break down.

For the averaged values of the Green function matrix elements Gij (r) = 〈Ǧij δ(Ri −
Rj − r)〉 (where Ri is the atomic centre corresponding to basis function i) the continuum
Green functions (diagonal and non-diagonal) resulting from the SSCA/EMA [8, 32, 33] are
used. To evaluate the ensemble average of the fourfold summation term one has to distinguish
some cases, depending on how many and which of the four contributing atomic places are
identical [25].

In the following we will consider the terms yielding the ensemble average of the term
in square brackets in (2). Each summation index therein can be divided, one labelling the
position where the basis orbital is centred and the other labelling all other characteristics of
the orbital, e.g. the orbital quantum number. Because the averaging process refers only to the
atomic centres we assume for simplicity as a first step only one basis function per atom and
suppress the second kind of index. In the general case however, the fourfold summation over
these indices remain. We will come back to this at the end of this section.

For further abbreviation, an upper index i for the imaginary part is used and the bar (Ḡ)
denotes the diagonal part of the Green function. To distinguish between the two energies
(E and E′ = E + h̄ω) G and G′ are used and the explicit dependence on the energy is
suppressed in the notation. For the introduction of a phenomenological vertex correction we
have to make some remarks: In the SSCA/EMA (and some other integral equation methods)
the continuum non-diagonal Green function contains the pair distribution function g(r) as a
factor [23,31]. Following from that a functionA(r) can be defined such thatG(r) = g(r)A(r)

holds. The distribution functions describing the probability of finding the atoms in (2) in a
certain configuration have to be approximated by pair distribution functions. To do this in a
consistent way with the approximations inherent in the SSCA/EMA [23], one has to consider
the following points. (i) As mentioned above, G(r) already contains the pair distribution, so
one has to ensure that it is not taken twice. (ii) For the two centre terms it follows from (i) that if
G(r) occurs, no extra g(r) has to be taken into account, and ifG(r)G(−r)would occur one has
to replace one of the G’s by the above defined function A. (iii) The three particle distribution
function in the SSCA/EMA is simply a chain of pair distribution functions connecting each
pair in the three particles. Analogous to the two centre terms, if G(r) occurs, no extra g(r)
has to be taken into account. Only the matrix elements of the current J (r) (as a function of the
distance vector of the two centres) has to be weighted with g(r). (iv) The approximation of the
four particle distribution function in the SSCA/EMA can be written in three additive terms:
The first one is a pure chain connecting successive pairs of points and the last with the first
one, the second and third terms contain this chain with an additional factor h(r) = g(r) − 1
connecting two diagonal points in each case.

Abiding by these rules, one gets the following terms:

• one centre term:

ḠiJ (0)Ḡi ′J (0)

• two centre terms:

ρ

∫
ḠiJ (r)Ḡi ′J (−r)g(r)d3r

ρ

∫
ḠiJ (0)Gi(r)′J (−r)d3r

ρ

∫
Gi(r)J (0)Ḡi ′J (−r)d3r
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ρ

∫
ḠiJ (r)Gi(−r)′J (0)d3r

ρ

∫
Gi(r)J (−r)Ḡi ′J (0)d3r

ρ

∫
Gi(r)J (0)Ai(−r)J (0)d3r

In terms containingG(r) the pair distribution g(r) does not occur explicitly becauseG(r)
already contains it as a factor. For the same reason one has to use the modified Green function
A in the last of the two centre terms.

• three centre terms:

ρ2
∫ ∫

Gi(r)(gJ )(r′)Ḡi ′(gJ )(−r − r′)d3rd3r ′

ρ2
∫ ∫

Gi(r)(gJ )(r′)Gi(−r − r′)′J (0)d3rd3r ′

ρ2
∫ ∫

Gi(r)J (0)Gi(r′)′(gJ )(−r − r′)d3rd3r ′

ρ2
∫ ∫

Ḡi(gJ )(r)Gi(r′)′(gJ )(−r − r′)d3rd3r ′

ρ2
∫ ∫

Gi(r)J (−r)Gi(r′)′J (−r′)g(|r − r′|)d3rd3r ′

where (gJ )(r) = g(r)J (r).

• four centre term:

ρ3
∫ ∫ ∫

Gi(r)(gJ )(r′)Gi(r′′)′(gJ )(−r − r′ − r′′)d3rd3r ′d3r ′′

+ρ3
∫ ∫ ∫

Gi(r)(gJ )(r′)Gi(r′′)′(gJ )(−r − r′ − r′′)h(|r + r′|)d3rd3r ′d3r ′′

+ρ3
∫ ∫ ∫

Gi(r)(gJ )(r′)Gi(r′′)′(gJ )(−r − r′ − r′′)h(|r′ + r′′|)d3rd3r ′d3r ′′

In general, at each type of atom more than one basis orbital has to be taken into account.
As mentioned above, one has to build a fourfold sum running through the orbital types. The
effect of doing this can be described in the following manner: The products listed above have
to be interpreted as matrix products ofG and J (running through the different orbitals at each
atom) and the trace over the result has to be inserted for the term in square brackets in (2).

3. Angular dependence and Fourier transforms of the current matrix elements

Especially for evaluating the three and four centre terms above, it is very useful to change
into the Fourier space, because all folding integrals become simple products there. The matrix
elements of the Green functions as well as those of the current are in general not spherically
symmetric but depend on all three space coordinates. As for the Green function in the sp3-
or sp3d5-fluid model [32, 33], one can introduce angular variables for the orbital directions
(denoted, e.g., by ŝ, meaning the unit vector of the direction as well as two of the Euler angles).
After all needed transformations, the average over these angular variables can be taken. In
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addition, one has to introduce a third angular variable for the direction of the electrical field of
the light E (which determines the component of the current vector). Notice that the E-angle
variables appearing in each of the two J -components in the terms in (2) are the same (so they
are not uncorrelated). Similar to the procedure and the terminology in [33] (as far as possible
we also take the same notations as in [33]) one now deals with orbitals ‘with direction ŝ’—that
are orbitals which have the angular dependence Y l0(r̂

′) in a reference frame where the z-axis
is parallel to the direction ŝ in the laboratory system. Choosing a laboratory system where the
z axis is parallel to the distance vector between the two atoms considered r (i.e. r = r ẑ) the
matrix elements of the current in the direction of E between two orbitals with orbital quantum
numbers l1, l2 and directions ŝ1, ŝ2 can be expanded in terms of (totally normalized) spherical
harmonics:

Jl1,l2(r ẑ, ŝ1, ŝ2, ŝE) =
∑

ν1,ν2,νE

J l1l2ν1ν2νE
(r)Y l1ν1

(ŝ1)Y
l2
ν2
(ŝ2)Y

1
νE
(ŝE). (3)

Only terms with νE = −ν1 − ν2 do not vanish (see appendix) consistent with the dipole
selection rule. An analogous expansion holds for the Fourier transformed function J̃ , where
the orientations ŝ′

1, ŝ
′
2, ŝ

′
E now have to be considered in a laboratory frame where the z axis

is parallel to the actual k vector. So the transformation of the coefficients in J to that in
J̃ can be performed in two steps: first, a rotation of the reference frame and, second, the
Fourier transformation, which may be performed by the use of the Rayleigh expansion of
the exponential factor [34] yielding some Fourier–Bessel transformations. Details and the
resulting transformation formulas for s and p-like states are given in the appendix.

As an example the first of the above listed three centre terms W 3
1 for a sp3-liquid is now

treated. For abbreviation, I = (gJ ) is used and we suppress the index i for the imaginary part.
As already mentioned, the functions G and I are matrices because of the different orbitals at
each atom, and we evaluate the integral in Fourier space. Instead of summing over the three
possible directions of the p-orbitals at each atom, the convolution property given in equation
(3.9) of [32] (or more generally in [33]) can be used in a similar way as used there. The final
result for the term considered is:

W 3
1 = ρ2

(2π)3

1∑
l1,l2,l3=0

3(2l1 + 1)(2l2 + 2)(2l3 + 1)
∫ ∫ ∫ ∫ ∫

×G̃l1l2(k, ŝ1, ŝ2)Ĩ
l2l3(k, ŝ2, ŝ3, ŝE)Ḡ

l3 Ĩ l3l1(k, ŝ3, ŝ1)
d2ŝ1

4π

d2ŝ2

4π

d2ŝ3

4π

d2ŝE

4π
d3k

= ρ2

2π2

1∑
l1,l2,l3=0

3(2l1 + 1)(2l2 + 2)(2l3 + 1)

×
∑
ν,µ

(−1)µ
∫ ∞

0
G̃l1l2ν(k)Ĩ

l2l3
ν,µ,−ν−µ(k)Ḡl3 Ĩ

l3l1−µ,−ν,µ+ν(k)dk.

The factor (−1)µ is due to the complex definition of spherical harmonics Y l∗µ = (−1)µY l−µ
and the non-diagonal Green function terms are given by the expansion [32, 33]:

G̃l1l2(kẑ, ŝ1, ŝ2) =
∑
µ

G̃l1l2µ(k)Y
l1
µ (ŝ1)Y

l2−µ(ŝ2)

The other terms needed can be calculated in a similar way, but some helpful remarks are
necessary. For the evaluation of the four-centre-term part with the interconnecting h term, one
has to compute the folding integral of two terms in the Fourier space, transform it back to real
space, multiply it with h(r) and proceed then as with the three centre terms. If one decides
to evaluate the two centre terms in real space (for reduction of computational cost) one has to
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pay attention to the change of sign by using, e.g.,Gl1,l2(r, ŝ1, ŝ2) instead ofGl1,l2(−r, ŝ1, ŝ2).
Then an additional factor appears, (−1)l1+l2 in case G is reversed and (−1)l1+l2+1 in case J is
reversed.

4. Optical properties of liquid silicon

For the determination of the underlying electronic properties, e.g., the ensemble-averaged
Green functions, the following parameters were used: the tight binding parameters are the
often used ones published by Goodwin, Skinner and Pettifor [35] describing a basis of 3s- and
3p-orbitals. The pair distribution function was taken from the experimental data of Waseda
et al [36] and the mass density ρm = 2.59 g cm−3 we take from [37]. The integral equations
of the SSCA/EMA are then solved on a (one dimensional) grid for the atomic distance of 4096
points and a spacing of 0.05 aB (Bohr radius). The resulting electronic density of states is given
in [33]. It is similar to that one in [8]. One question arising when using empirical parameters
(see above) is how to get the current (respectively, the momentum or optical) matrix elements.
Since there is no consistent way to obtain these from the empirical parameters, especially if
these do not contain any overlap, we evaluate them from the simple atomic Slater-orbital fits
given by Clementi and Raimondy [38]. The formulas are given in the appendix and first lead
to the elements in Fourier space which are then transformed back to real space.

0 1 2 3 4 5
E[eV]

0.0

0.1

0.2

0.3

0.4

0.5

σ(
ω

)

Figure 1. Optical conductivity of liquid silicon in a.u.’s (e2/h̄aB = 4.6 × 106(�m)−1). Result
from Green function method , molecular dynamics data from [2] —— and from [1] - - - -.

With these Green functions and current matrix elements the terms given in part 2 are
computed, and one immediately gets the optical (that is the frequency dependent) conductivity
from (2). The result is shown in figure 1 together with the only two results, to our knowledge,
from molecular dynamics simulations [1, 2]. These deviate in the low-frequency region (less
about 2 eV) from our results by a factor of about 0.3 or 1.5 respectively. The imaginary part
of the dielectric function is given by ε2(ω) = σ(ω)/(ε0ω). To get the real part, one has to
carry out a Kramers–Kronig transformation. Unfortunately, the restriction to the 3s and 3p
states leads to a sudden (unphysical) decrease and vanishing of the conductivity (above about
5 eV) due to the artificial right band edge in the density of states in the sp3-model [8, 33].
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Therefore, an empirical extrapolation is needed for a useful evaluation of the Kramers–Kronig
transformation. We use an extrapolation ∼ ω−3 for ε2(ω) above 5 eV corresponding to a
Drude behaviour at high energies. The choice of the extrapolation scheme (within a physically
reasonable frame) does not affect the low-frequency (less than about 3 eV) values of ε1 very
strongly. The total contribution of the extrapolated part to ε1 is less than about 0.8 in this
regime—much less than the corresponding absolute value of ε1.

1 2 3 4 5
0

20

40

60

80

1 2 3 4 5
−30

−20

−10

0

1 2 3 4 5
E[eV]

2
3
4

5
6

7
8

1 2 3 4 5
E[eV]

0
1
2

3
4

5
6

ε 2 ε 1

n k

Figure 2. Complex dielectric function (ε1 + iε2) and complex index of refraction (n + ik) of
liquid silicon. Result from continuum Green function method , experimental data from
[14]•(T = 1450 K), [14]◦(T = 1600 K), [12]�, [39]�, and [16, 17]♦.

The resulting optical properties (complex dielectric function ε1 + iε2 and complex index
of refraction n + ik) are shown in figure 2 together with some experimental data from the
literature. The overall agreement in the complex index of refraction and the imaginary part
of the dielectric function is very good. The molecular dynamics results mentioned above lead
to values of ε2 (∼ σ/ω) that deviate by an factor 0.3 or 1.5 respectively in the low-frequency
region and are therefore not more satisfying compared to the experiments than our results.
Deviations of our results appear in the real part of the dielectric function—but there we also
find a large fluctuation of the experimental values. This is because ε1 = n2 − k2 is here a
relatively small difference of two large values resulting in a large error. Nevertheless, we find
the tendency of our computed ε1 to be not as negative as the experimental values in the low-
energy regime. The other properties fit very well and are dominated by the metallic behaviour
which is given by the factor 1/ω in ε2.

Because liquid silicon has a metallic character, it is appropriate to attempt an approximation
of the optical properties by a Drude model. The data found from a fit of the function
σD = ε0ω

2
pτ/(ω

2τ 2 + 1) to the result of the continuum Green function method (not taking
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into account the extrapolated part) are the plasma frequency ωp = 2.87 × 106 rad s−1

and the relaxation time τ = 0.159 fs. Compared with values found experimentally (e.g.,
2.5 × 106 rad s−1, 0.212 fs [17]), it is obvious that the relaxation time is somewhat too small.
This is consistent with the deviations found in the low-energy part for the real part of the
dielectric function as one may see from the Drude equation ε1 = 1 − ω2

p/
(
ω2 + τ−2

)
where

the second (negative) part scales approximately with τ 2 at low frequencies. Because the
relaxation time determines the decreasing behaviour of σ with increasing ω in the framework
of the Drude model (σD(ω)/σD(0) = 1/(ω2τ 2 + 1)) we can conclude that the optical
conductivity found here decreases too slowly. That is neither a consequence of using the
continuum Green function method nor of the neglected vertex corrections but rather of the
limitations of the sp3-model. This can be shown in terms of joint densities of states (JDOS
D(E) = ∫ EF

EF−E n(E
′)n(E′ + E)dE′, EF Fermi energy, n(E) electronic density of states)

divided by the energy. Because the conductivity is a JDOS per energy weighted with optical
matrix elements we may draw conclusions about the conductivity itself from the JDOS per
energy. For the reasons given above we are interested in the decreasing behaviour of that JDOS
per energy and therefore the slopes of this function are shown in figure 3 for the sp3-and the
sp3d5-model. At low energies the sp3d5 slope is almost zero, i.e. the JDOS per enery is constant,
whereas the sp3 slope is positive, i.e. the JDOS per energy is even increasing. This is caused
by the superlinear increase of the electronic density of states in the sp3-model in the region
near the Fermi enery. The sudden decrease in the JDOS (large negative slope) in the sp3-model
above about 6 eV, however, is only a consequence of the artificial right band edge in the density
of states. The beginning of a steeper negative slope in the sp3d5-model in contrast is due to the
dip in the occupied part of the density of states between p- and s-dominated states [33]. The
almost constant behaviour at low energies is typical for a simple metal whereas the features
of the sp3model seem in fact not very well suited for a description within the Drude model.

0 2 4 6
E[eV]

−2

0

2

Y
(E

)

Figure 3. Slope Y(E) of the JDOS per energy for the sp3-model —— and for the sp3d5-model
- - - -. (

Y (E) = d/dE

(∫ EF

EF−E
dE′n(E′)n(E + E′)/E

))



Optical properties of liquid silicon 4349

However, if the conductivity is fitted to the Drude model the decreasing behaviour of the
corresponding JDOS per energy influences (besides the effect of the optical matrix elements)
the resulting relaxation time. Therefore we conclude from the reduction of the slope of the
JDOS per energy when using the sp3d5-model the slope of the conductivity up to about 5 eV
will also become reduced (i.e. more negative) and the results for the Drude parameters as well
as for the real part of the dielectric function are expected to become better in the sp3d5-model.

A calculation of the optical properties in the sp3d5-model going beyond the above
given estimation demands further extensions or generalizations of the formulae (e.g., the
transformation rules given in the appendix) and might be the aim of a separate paper.

5. Conclusions

The results of the integral equation approach to the electronic properties of liquid silicon
as a sp3-fluid were used to evaluate the optical properties. To do this we first considered the
terms needed for an approximation of the optical conductivity consistent with the SSCA/EMA.
Second, we extended the method for the effective handling of the angular dependences known
from the molecular liquid model to the direction of the electrical field of the incoming light.
The computed complex index of refraction and the imaginary part of the dielectric function—
even in the sp3-model—agree well with experimental data. Deviations occurring in the real
part of the dielectric function and the fitted Drude parameters are shown to be an artifact of
the sp3-model.

Appendix A. Evaluating and transforming current matrix elements

The evaluation of the matrix elements of the current (or, equivalently, of the momentum)
between two orbitals φ and ψ is best done in Fourier space

eE · J̃(k) = eE ·
∫

d3R

(〈
φ(r)|ih e

m
∇r ψ(r − R)

〉
r

exp(ik · R)

)

= − ih
e

m
eE ·

∫
d3r

(
φ̃(r)

∫
d3R

(∇r ψ
∗(R) exp(ik · (−R + r))

))

= φ̃(k)h
e

m
eE · kψ̃∗(k). (A.1)

Following from that, the angular dependence of the direction of the electrical field is given here
by Y 1

0 (ŝE). Of course, the restriction lE = 1 is just a consequence of the dipole approximation.
The Fourier transformed orbitals can be evaluated by using the Rayleigh expansion for

the exp(ik · r) factor, resulting in

ψ̃(k) =
∫

d3ruψ(r)Y
m
µ (r̂) exp (ik · r) = 4π im

∫
drr2jm(kr)uψ(r)Y

m
µ (k̂)

and, consequently, for an orbital with direction ŝ1 one finds in a reference frame with ẑ ‖ k

ψ̃ŝ1(k) = 4π im
∫

drr2jm(kr)uψ(r)Y
m
0 (ŝ1)

Therefore, in the expansion of J̃ (analogous to (3)) only terms with ν1 = 0, ν2 = 0, νE = 0
appear.

The three-dimensional Fourier transforms of (3) can be obtained via some one-dimensional
Fourier–Bessel transformations, similar to the procedure in [32]. To find the connections
between the functions, their Fourier transforms and the functions which have to be Fourier–
Bessel transformed, one can, in general, proceed in the following manner. Remember that
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(3) holds for a reference system with z axis parallel to the interconnecting vector R and the
analogous expansion in k-space for a reference frame with z axis parallel to the actual k.
Therefore, one has first to rotate the reference system (from z ‖ R to z ‖ k). In practice that
means that all spherical harmonics are replaced by sums over rotation matrices times spherical
harmonics in the new frame [40]. Now one can use the Rayleigh-expansion for exp(ik · R)

(e.g. [34]) to obtain the Fourier transformation itself. The main thing to do is (lengthy but
straight-forward) to evaluate all coefficients and sort the terms. We present here the result for
s- and p-states only:

J̃
0,0
0,0,0 =

(
J

0,0
0,0,0

)(1)
J̃

1,0
0,0,0 = 1

3

(
J

1,0
0,0,0 − 2J 1,0

1,0,−1

)(0)
+

2

3

(
J

1,0
0,0,0 + J 1,0

1,0,−1

)(2)
J̃

1,0
1,0,−1 = J

1,0
−1,0,1

= − 1

3

(
J

1,0
0,0,0 − 2J 1,0

1,0,−1

)(0)
+

1

3

(
J

1,0
0,0,0 + J 1,0

1,0,−1

)(2)
J̃

1,1
0,0,0 = 3

5

(
J

1,1
0,0,0 − 2J 1,1

1,−1,0

)(1)
+

2

5

(
J

1,1
0,0,0 + 3J 1,1

1,−1,0

)(3)
J̃

1,1
0,0,0 = 1

5

(
3J 1,1

0,0,0 − 2J 1,1
0,1,−1 − 2J 1,1

1,0,−1 − 2J 1,1
1,−1,0

)(1)
+

2

5

(
J

1,1
0,0,0 + J 1,1

0,1,−1 + J 1,1
1,0,−1 + J 1,1

1,−1,0

)(3)
J̃

1,1
0,1,−1 = J̃

1,1
0,−1,1 (A.2)

= − 1

5

(
J

1,1
0,0,0 − 4J 1,1

0,1,−1 + J 1,1
1,0,−1 + J 1,1

1,−1,0

)(1)
+

1

5

(
J

1,1
0,0,0 + J 1,1

0,1,−1 + J 1,1
1,0,−1 + J 1,1

1,−1,0

)(3)
J̃

1,1
1,0,−1 = J̃

1,1
−1,0,1

= − 1

5

(
J

1,1
0,0,0 + J 1,1

0,1,−1 − 4J 1,1
1,0,−1 + J 1,1

1,−1,0

)(1)
+

1

5

(
J

1,1
0,0,0 + J 1,1

0,1,−1 + J 1,1
1,0,−1 + J 1,1

1,−1,0

)(3)
J̃

1,1
1,−1,0 = J̃

1,1
−1,1,0

= − 1

5

(
J

1,1
0,0,0 + J 1,1

0,1,−1 + J 1,1
1,0,−1 − 4J 1,1

1,−1,0

)(1)
+

1

5

(
J

1,1
0,0,0 + J 1,1

0,1,−1 + J 1,1
1,0,−1 + J 1,1

1,−1,0

)(3)
.

The upper numerals in parentheses on the right denote the corresponding Fourier–Bessel
transformation [32, 41]. The inverse transformation is analogous (interchange of J and J̃ ).
One finds that only terms with ν1 +ν2 +νE = 0 occur, a consequence of the dipole selection rule.
For the pure current element, the formulas simplify a little because of symmetry, i.e. starting
only with terms J̃ lm000 (see above) it follows that J 1,1

1,−1,0 = J
1,1
−1,1,0 = J

1,1
1,0,−1 = J

1,1
−1,0,1 =

J
1,1
0,1,−1 = J

1,1
0,−1,1. Unfortunately, not only the pure J and its transformation is needed but also

J weighted with the pair distribution function.
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